Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Conserved Quantities in the Lorenz System (2505.20572v2)

Published 26 May 2025 in nlin.CD, math-ph, and math.MP

Abstract: The Lorenz system, a seminal model in chaos theory, is renowned for its complex dynamics and sensitive dependence on initial conditions. This work investigates conserved quantities within the standard Lorenz equations. The system exhibits phase space volume contraction, a characteristic of dissipative systems. Despite the common understanding positing the absence of conserved quantities in its typical chaotic parameter regimes, this study demonstrates that the Lorenz system possesses at least three dynamical constants of motion. The implications of these conserved quantities for the system's chaotic behavior are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 40 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com