Dice Question Streamline Icon: https://streamlinehq.com

Binning phenomenon for reduced orbit lengths of qP over finite fields

Determine whether, for the discrete Painlevé mapping (x,y,t) ↦ (t/(x−s^{-1}y), s x/y, s t) over a finite field F_q with s ∈ F_q^* of multiplicative order r, the reduced orbit length #(γ)/r always lies in one of the M_q disjoint bins B_m^{(q)}, where M_q = ⌈(1/4)(√q + 1/(√q − 2))⌉ and B_m^{(q)} = [q+1−2√q·m, q+1+2√q·m] for 1 ≤ m ≤ M_q−1 and B_{M_q}^{(q)} = [1, q+1+2√q·M_q].

Information Square Streamline Icon: https://streamlinehq.com

Background

Beyond the Hasse-type upper bound, the computational data reveal a striking refinement: for fixed q, the reduced orbit lengths cluster into specific intervals (“bins”) centered around q+1 with widths proportional to √q, reminiscent of distributions of point counts on elliptic curves.

The authors formalize this observation by defining a finite number M_q of bins and conjecturing that every reduced orbit length falls into one of these bins, providing a structured constraint on the spectrum of orbit sizes.

References

Our main computational results are summarised in Conjecture \ref{conj:numerical}. These conjectures arise from the study of orbits of Equation eq:qp1 over $\mathbb{F}q$, with the prime power $q$ ranging from $2$ to $499$. Let $\gamma$ denote any orbit of Equation eq:qp1 over $\mathbb{F}{q}$ and suppose $r$ is the multiplicative order of $s\in\mathbb{F}_{q}*$. Then the following results hold true. Let $M_q$ be the positive integer defined by the ceiling \begin{equation*} M_q=\left\lceil\frac{1}{4}\left(\sqrt{q}+\frac{1}{\sqrt{q}-2\right)\right\rceil , \end{equation*} and define bins \begin{equation}\label{eq:bindef} B_m{(q)}=\begin{cases} \left[\frac{q+1-2\sqrt{q}{m},\frac{q+1+2\sqrt{q}{m}\right], &1\leq m\leq M_q-1,\6pt] \left[1,\frac{q+1+2\sqrt{q}{m}\right], &m=M_q. \end{cases} \end{equation} Then $#(\gamma)/r$ lies in one of the $M_q$ disjoint bins $B_m{(q)}$, $1\leq m\leq M_q$.

eq:bindef:

Bm(q)={[q+12qm,q+1+2qm],1mMq1,[1,q+1+2qm],m=Mq.B_m^{(q)}=\begin{cases} \left[\frac{q+1-2\sqrt{q}}{m},\frac{q+1+2\sqrt{q}}{m}\right], &1\leq m\leq M_q-1,\\[6pt] \left[1,\frac{q+1+2\sqrt{q}}{m}\right], &m=M_q. \end{cases}

eq:qp1:

(x,y,t)(x,y,t),{x=txs1y,y=sxy,t=st.(x,y,t)\mapsto (\overline{x},\overline{y},\overline{t}),\qquad \begin{cases} \displaystyle\overline{x}=\frac{t}{x-s^{-1}y}, & \\ \displaystyle\overline{y}=\frac{s\, x}{y}, & \\ \displaystyle\overline{t}=s\,t. & \end{cases}

Arithmetic dynamics of a discrete Painlevé equation (2508.18578 - Joshi et al., 26 Aug 2025) in Conjecture 1.2.B, Section 1.2 (Main results)