Conjectured optimal form for 2×n matrices
Prove that, among all 2×n real matrices A with rows normalized to unit ℓ2 norm, the matrix A = (1/√2) [[1, 1, 0, …, 0], [1, −1, 0, …, 0]] maximizes β(A) = 2^{-n} ∑_{x∈{−1,1}^n} ||Ax||∞.
References
Conjecture An optimal $2 \times n$ matrix is given by \begin{align*} A = \frac{1}{\sqrt{2} \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \ 1 & -1 & 0 & \cdots & 0 \end{bmatrix} \end{align*}
                — On the Structure of Bad Science Matrices
                
                (2408.00933 - Albors et al., 1 Aug 2024) in Subsection “Wide Matrices”