Improve convergence rate for eigenvalue approximation under heterogeneous weak loadings
Derive the exact limit of the matrix B_N t^{-1} \widehat{F}_t' F_t B_N^{-1} under Assumptions A.1–A.4 with heterogeneously weak factor loadings (1 ≥ α_1 ≥ ⋯ ≥ α_r > 1/2), and use this limit to improve the convergence rate in Lemma 5(b)(ii) for sup_{k_0 ≤ t ≤ T−1} ||(N B_N^{-2} D_{Nt,r}^2)^{-1} − Σ_Λ^{-1}|| beyond the currently established bound O_p(N/N^{α_r}·T^{-1/2}) + O_p(N^{-(1−2α_r)/2}).
References
For (ii.), we leave the same convergence rate. We conjecture that it can be improved, via derivation of the exact limit of *B_Nt{-1}\widehat{*F}t'*F_t*B{N}{-1}.
— New Tests of Equal Forecast Accuracy for Factor-Augmented Regressions with Weaker Loadings
(2409.20415 - Margaritella et al., 30 Sep 2024) in Lemma 5, Mathematical Supplement, Section "Extra Results: Better Rates for In-Sample Factor Approximation and Eigenvalues"