IIC hitting probability normalized by τ∞ equals p-capacity
Establish that for critical Bernoulli percolation on Z^d in the high-dimensional (mean-field) regime where the two-point function satisfies τ(z) ∼ a_d·||z||^{2−d} (nearest-neighbor for d>10 or sufficiently spread-out for d>6), the limit lim_{||z||→∞} P( C_∞(z) ∩ A ≠ ∅ ) / τ_∞(z) equals pCap(A) for every finite set A ⊂ Z^d, where τ_∞(z) = P( z ∈ C_∞(0) ) and pCap(A) = lim_{||z||→∞} P(z ↔ A)/τ(z).
References
Conjecture 1 For any finite $A\subset \mathbb Zd$, $$\lim_{|z|\to \infty} \frac{\mathbb P(\mathcal C_\infty(z)\cap A\neq )}{\tau_\infty(z)} = \textrm{pCap}(A). $$
                — Capacity in high dimensional percolation
                
                (2509.21253 - Asselah et al., 25 Sep 2025) in Introduction, Conjecture 1