Limit law for the cover time of wired planar domains
Determine the limiting distribution of the normalized cover time for the simple random walk on the wired domain D_N ∪ {ρ}; specifically, show that there exists an a.s.-finite positive random variable \overline{\mathfrak{Z}}^D such that, for every u ∈ R, P^\varrho( \sqrt{ \tau_{\mathrm{cov}} / \deg(\overline{D}_N) } ≤ (1/\sqrt{\pi})\,\log N − (1/(4\sqrt{\pi}))\,\log\log N + u ) converges to E\big( exp{ − \overline{\mathfrak{Z}}^D e^{ − \sqrt{4\pi}\, u } } \big).
References
Conjecture 5.4 For each admissible domain~D, there exists an almost-surely finite and positive random variable~\overline{\eusb Z}D such that \begin{equation} \label{E:5.20} P\varrho\Biggl(\,\sqrt{\frac{\tau_{\text{\rm cov}}{\deg(\overline D_N)}\le \frac1{\sqrt\pi}\log N -\frac1{4\sqrt\pi}\log\log N+u\Biggr) \,\,\underset{N\to\infty}\longrightarrow\,\,E\bigl({-\overline{\eusb Z}D{-\sqrt{4\pi}\, u}\bigr) \end{equation} holds for all~u\in\mathbb R. Here \text{\rm deg}(\overline D_N) is as in (5.15).