Two-set product limit for p-capacity under IIC normalization
Establish that for critical Bernoulli percolation on Z^d in the high-dimensional regime (nearest-neighbor d>10 or sufficiently spread-out d>6), and for any finite sets A,B ⊂ Z^d, the limit lim_{||z||→∞} [ pCap(A) + pCap(B) − pCap( A ∪ (z + B) ) ] / τ_∞(z) equals pCap(A)·pCap(B), where τ_∞(z) = P( z ∈ C_∞(0) ).
References
Conjecture 2 For any finite $A,B\subset \mathbb Zd$, $$\lim_{|z|\to \infty}\frac{ \textrm{pCap}(A) + \textrm{pCap}(B) - \textrm{pCap}(A \cup(z + B))}{\tau_\infty(z)} = \textrm{pCap}(A)\cdot \textrm{pCap}(B).$$
                — Capacity in high dimensional percolation
                
                (2509.21253 - Asselah et al., 25 Sep 2025) in Introduction, Conjecture 2