Gilbert–Pollak Conjecture on the Euclidean Steiner Ratio
Determine whether the global Steiner ratio of the Euclidean plane R^2 equals sqrt(3)/2 by proving or disproving the Gilbert–Pollak Conjecture, i.e., establish the exact infimum of L(SMT(P))/L(MST(P)) over all finite point sets P subset of R^2.
References
The Gilbert–Pollak Conjecture states that for the Euclidean plane \mathcal{X} = \mathbb{R}2, the global Steiner ratio equals \sqrt{3} / 2. The conjecture is still open to this date [ivanov2012steiner].
— Randomized HyperSteiner: A Stochastic Delaunay Triangulation Heuristic for the Hyperbolic Steiner Minimal Tree
(2510.09328 - Medbouhi et al., 10 Oct 2025) in Section 3.2 (Steiner Minimal Trees)