Randomized HyperSteiner: A Stochastic Delaunay Triangulation Heuristic for the Hyperbolic Steiner Minimal Tree (2510.09328v1)
Abstract: We study the problem of constructing Steiner Minimal Trees (SMTs) in hyperbolic space. Exact SMT computation is NP-hard, and existing hyperbolic heuristics such as HyperSteiner are deterministic and often get trapped in locally suboptimal configurations. We introduce Randomized HyperSteiner (RHS), a stochastic Delaunay triangulation heuristic that incorporates randomness into the expansion process and refines candidate trees via Riemannian gradient descent optimization. Experiments on synthetic data sets and a real-world single-cell transcriptomic data show that RHS outperforms Minimum Spanning Tree (MST), Neighbour Joining, and vanilla HyperSteiner (HS). In near-boundary configurations, RHS can achieve a 32% reduction in total length over HS, demonstrating its effectiveness and robustness in diverse data regimes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.