Characterize when symbolic and ordinary powers coincide for binomial edge ideals
Determine a graph-theoretic characterization of simple graphs G for which the binomial edge ideal J_G ⊂ k[x_1, …, x_d, y_1, …, y_d] satisfies J_G^{(n)} = J_G^n for all integers n ≥ 1, analogous to the bipartite characterization known for monomial edge ideals, in order to identify precisely when symbolic and ordinary powers coincide in the binomial edge ideal setting.
References
In the binomial edge ideal case it is yet unknown if such a characterization exists.
                — On the symbolic $F$-splitness of binomial edge ideals
                
                (2404.14640 - Ramírez-Moreno, 23 Apr 2024) in Section 1: Introduction