Erdős Conjecture on Sidon set density (limsup equals 1)
Establish whether there exists a Sidon subset A of the natural numbers such that limsup_{n→∞} |A ∩ {1, …, n}| / √n = 1.
Sponsor
References
There exists a Sidon set of natural numbers $A\subsetN$ so that \limsup_{n\to\infty} \frac{A \cap {1,\dotsc,n}{\sqrt{n}=1.
— Forbidden Sidon subsets of perfect difference sets, featuring a human-assisted proof
(2510.19804 - Alexeev et al., 22 Oct 2025) in Conjecture 1.2 (label: conjecture:329), Section 1 (Introduction)