Validity of the constant-cycle formula for the twisted Beauville–Voisin class in higher-dimensional Bridgeland moduli spaces
Determine whether the formula o_{𝒳} = c_2(F)/rank(F) + (1 − deg(c_2(F))/rank(F)) · o_X, used to define the twisted Beauville–Voisin class via objects lying on constant cycle Lagrangian subvarieties, holds for arbitrary objects F when the Bridgeland moduli space N = M_H(𝒳, w) has dimension greater than 2.
References
For $\dim N > 2$, it remains open whether  the equation eq:def-twistbv holds for arbitrary $F$ lying on a constant cycle Lagrangian subvariety.
eq:def-twistbv:
$o_X = \frac{c_2(F)}{\rank F} + \left(1 - \frac{\deg(c_2(F))}{\rank F}\right) o_X $
                — Filtrations on the derived category of twisted K3 surfaces
                
                (2402.13793 - Chen et al., 21 Feb 2024) in Section 4 (Twisted Beauville–Voisin class), Remark following Equation (4.1)