Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generating Functions for Line Bundle Cohomology Dimensions on Complex Projective Varieties (2401.14463v2)

Published 25 Jan 2024 in math.AG, hep-th, and math.AC

Abstract: This paper explores the possibility of constructing multivariate generating functions for all cohomology dimensions of all holomorphic line bundles on certain complex projective varieties of Fano, Calabi-Yau and general type in various dimensions and Picard numbers. Most of the results are conjectural and rely on explicit cohomology computations. We first propose a generating function for the Euler characteristic of all holomorphic line bundles on complete intersections in products of projective spaces and toric varieties. This generating function is constructed by expanding the Hilbert-Poincare series associated with the coordinate ring of the variety around all possible combinations of zero and infinity and then summing up the resulting contributions with alternating signs. Similar generating functions are proposed for the individual cohomology dimensions of all holomorphic line bundles on certain complete intersections, including examples of Mori and non-Mori dream spaces. Surprisingly, the examples studied indicate that a single generating function encodes both the zeroth and all higher cohomologies upon expansion around different combinations of zero and infinity, raising the question whether such generating functions determine the variety uniquely.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Constantin and A. Lukas, “Formulae for Line Bundle Cohomology on Calabi-Yau Threefolds,” Fortsch. Phys. 67 (2019), no. 12, 1900084, 1808.09992.
  2. M. Larfors and R. Schneider, “Line bundle cohomologies on CICYs with Picard number two,” Fortsch. Phys. 67 (2019), no. 12, 1900083, 1906.00392.
  3. C. R. Brodie, A. Constantin, R. Deen, and A. Lukas, “Index Formulae for Line Bundle Cohomology on Complex Surfaces,” Fortsch. Phys. 68 (2020), no. 2, 1900086, 1906.08769.
  4. D. Klaewer and L. Schlechter, “Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties,” Phys. Lett. B789 (2019) 438–443, 1809.02547.
  5. C. R. Brodie, A. Constantin, R. Deen, and A. Lukas, “Machine Learning Line Bundle Cohomology,” Fortsch. Phys. 68 (2020), no. 1, 1900087, 1906.08730.
  6. C. R. Brodie, A. Constantin, R. Deen, and A. Lukas, “Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces,” Complex Manifolds 8 (2021), no. 1, 223, 1906.08363.
  7. C. R. Brodie and A. Constantin, “Cohomology Chambers on Complex Surfaces and Elliptically Fibered Calabi-Yau Three-folds,” 2009.01275.
  8. C. R. Brodie, A. Constantin, and A. Lukas, “Flops, Gromov-Witten invariants and symmetries of line bundle cohomology on Calabi-Yau three-folds,” J. Geom. Phys. 171 (2022) 104398, 2010.06597.
  9. C. Brodie, A. Constantin, J. Gray, A. Lukas, and F. Ruehle, “Recent Developments in Line Bundle Cohomology and Applications to String Phenomenology,” in Nankai Symposium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 12, 2021. 2112.12107.
  10. A. Constantin, “Intelligent Explorations of the String Theory Landscape,” 2204.08073.
  11. S. A. Abel, A. Constantin, T. R. Harvey, A. Lukas, and L. A. Nutricati, “Decoding Nature with Nature’s Tools: Heterotic Line Bundle Models of Particle Physics with Genetic Algorithms and Quantum Annealing,” Fortsch. Phys. 2306.03147.
  12. A. Constantin, T. R. Harvey, and A. Lukas, “Heterotic String Model Building with Monad Bundles and Reinforcement Learning,” Fortsch. Phys. 70 (2022), no. 2-3, 2100186, 2108.07316.
  13. T. Bauer, A. Kuronya, and T. Szemberg, “Zariski chambers, volumes, and stable base loci,” J. Reine Angew. Math. 576 (2004) 209–233, 0312211v1.
  14. C. R. Brodie, A. Constantin, A. Lukas, and F. Ruehle, “Geodesics in the extended Kähler cone of Calabi-Yau threefolds,” JHEP 03 (2022) 024, 2108.10323.
  15. Y. Hu and S. Keel, “Mori dream spaces and GIT,” Michigan Mathematical Journal 48 (05, 2000).
  16. L. B. Anderson, J. Gray, Y.-H. He, S.-J. Lee, and A. Lukas, “CICY package, based on methods described in arXiv:0911.1569, arXiv:0911.0865, arXiv:0805.2875, hep-th/0703249, hep-th/0702210,”.
  17. M. Larfors and R. Schneider, “pyCICY - A python CICY toolkit, 10.5281/zenodo.3243914, [github-link], (2019),”.
  18. “cohomCalg package,” 2010. High-performance line bundle cohomology computation based on methods described in arXiv:1003.5217, arXiv:1006.2392, arXiv:1006.0780. Download link: http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/.
  19. R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy, “Cohomology of Line Bundles: A Computational Algorithm,” J. Math. Phys. 51 (2010), no. 10, 103525, 1003.5217.
  20. T. Rahn and H. Roschy, “Cohomology of Line Bundles: Proof of the Algorithm,” J. Math. Phys. 51 (2010), no. 10, 103520, 1006.2392.
  21. S.-Y. Jow, “Cohomology of toric line bundles via simplicial Alexander duality,” Journal of Mathematical Physics 52 (Mar, 2011) 033506–033506, 1006.0780.
  22. R. Blumenhagen, B. Jurke, and T. Rahn, “Computational Tools for Cohomology of Toric Varieties,” Adv. High Energy Phys. 2011 (2011) 152749, 1104.1187.
  23. J. C. Ottem, “Birational geometry of hypersurfaces in products of projective spaces,” Mathematische Zeitschrift 280 (2015), no. 1, 135–148.
  24. C. Brodie, A. Constantin, A. Lukas, and F. Ruehle, “Flops for complete intersection Calabi-Yau threefolds,” J. Geom. Phys. 186 (2023) 104767, 2112.12106.
  25. S. H. Katz, D. R. Morrison, and M. R. Plesser, “Enhanced gauge symmetry in type II string theory,” Nucl. Phys. B 477 (1996) 105–140, hep-th/9601108.
  26. C. R. Brodie, A. Constantin, A. Lukas, and F. Ruehle, “Swampland conjectures and infinite flop chains,” Phys. Rev. D 104 (2021), no. 4, 046008, 2104.03325.
  27. T. Coates, A. M. Kasprzyk, G. Pitton, and K. Tveiten, “Maximally mutable Laurent polynomials,” Proc. R. Soc. A 477 (2021) 2107.14253.
  28. A. Chandra, A. Constantin, C. S. Fraser-Taliente, T. R. Harvey, and A. Lukas, “Enumerating Calabi-Yau Manifolds: Placing bounds on the number of diffeomorphism classes in the Kreuzer-Skarke list,” 2310.05909.
  29. N. Gendler, N. MacFadden, L. McAllister, J. Moritz, R. Nally, A. Schachner, and M. Stillman, “Counting Calabi-Yau Threefolds,” 2310.06820.
  30. R. Lazarsfeld, Positivity in Algebraic Geometry I: Classical Setting: Line Bundles and Linear Series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics. Springer, 2004.
  31. D. Cox, “The Homogeneous Coordinate Ring of a Toric Variety,” J. Algebraic Geometry (11, 1992) 17–50, 9210008.
  32. Graduate Studies in Mathematics. American Mathematical Soc., 2011.
  33. J. C. Ottem, Cox rings of projective varieties. PhD thesis, University of Oslo, 2009.
  34. C. Birkar, P. Cascini, C. Hacon, and J. McKernan, “Existence of minimal models for varieties of log general type,” J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
  35. P. Candelas, A. Dale, C. Lutken, and R. Schimmrigk, “Complete Intersection Calabi-Yau Manifolds,” Nucl. Phys. B 298 (1988) 493.
  36. A. Constantin, Heterotic String Models on Smooth Calabi-Yau Threefolds. PhD thesis, Oxford U., 2013. 1808.09993.
  37. E. I. Buchbinder, A. Constantin, and A. Lukas, “The Moduli Space of Heterotic Line Bundle Models: a Case Study for the Tetra-Quadric,” JHEP 03 (2014) 025, 1311.1941.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: