Character-weighted projector identity for twisted gauging
Establish that for gauging a finite group G via a strongly symmetric duality operator D^(g) intertwining the twisted Hamiltonian H^g and the dual Hamiltonian \tilde{H}, the operator identity D^(g) (D^(g))^\dagger = \sum_{\hat{g} \in \mathrm{Rep}(G)} \chi_{\hat{g}}(g) \; \tilde{\mathcal{O}}_{\hat{g}} holds in \mathrm{End}(\tilde{\mathscr{H}}), where \chi_{\hat{g}}(g) is the character of the irreducible representation \hat{g} evaluated at g and \tilde{\mathcal{O}}_{\hat{g}} are the generators of the \mathrm{Rep}(G) symmetry of the dual model.
References
We conjecture that the dual formula to be \begin{equation} \mathcal{D}{(g)} \cdot \left( \mathcal{D}{(g)} \right)\dag = \sum_{\hat{g} \in \mathrm{Rep} (G)} \chi_{\hat{g}(g) \, \tilde{\mathcal{O}{\hat{g} \in \mathrm{End} \left( \tilde{\mathscr{H} \right) \;, \label{eq:DDdagger} \end{equation} where $\chi{\hat{g}(g)=\textrm{Tr}[\hat{g}(g)]$ is the character for the $\hat{g}$ evaluated at $g$.