Equivariant Parameter Families of Spin Chains: A Discrete MPS Formulation (2507.19932v1)
Abstract: We analyze topological phase transitions and higher Berry curvature in one-dimensional quantum spin systems, using a framework that explicitly incorporates the symmetry group action on the parameter space. Based on a $G$-compatible discretization of the parameter space, we incorporate both group cochains and parameter-space differentials, enabling the systematic construction of equivariant topological invariants. We derive a fixed-point formula for the higher Berry invariant in the case where the symmetry action has isolated fixed points. This reveals that the phase transition point between Haldane and trivial phases acts as a monopole-like defect where higher Berry curvature emanates. We further discuss hierarchical structures of topological defects in the parameter space, governed by symmetry reductions and compatibility with subgroup structures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.