Papers
Topics
Authors
Recent
2000 character limit reached

Manipulating LLM Web Agents with Indirect Prompt Injection Attack via HTML Accessibility Tree

Published 20 Jul 2025 in cs.CR and cs.AI | (2507.14799v1)

Abstract: This work demonstrates that LLM-based web navigation agents offer powerful automation capabilities but are vulnerable to Indirect Prompt Injection (IPI) attacks. We show that adversaries can embed universal adversarial triggers in webpage HTML to hijack agent behavior that utilizes the accessibility tree to parse HTML, causing unintended or malicious actions. Using the Greedy Coordinate Gradient (GCG) algorithm and a Browser Gym agent powered by Llama-3.1, our system demonstrates high success rates across real websites in both targeted and general attacks, including login credential exfiltration and forced ad clicks. Our empirical results highlight critical security risks and the need for stronger defenses as LLM-driven autonomous web agents become more widely adopted. The system software (https://github.com/sej2020/manipulating-web-agents) is released under the MIT License, with an accompanying publicly available demo website (http://lethaiq.github.io/attack-web-LLM-agent).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.