Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Measuring Faithfulness and Abstention: An Automated Pipeline for Evaluating LLM-Generated 3-ply Case-Based Legal Arguments (2506.00694v2)

Published 31 May 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs demonstrate potential in complex legal tasks like argument generation, yet their reliability remains a concern. Building upon pilot work assessing LLM generation of 3-ply legal arguments using human evaluation, this paper introduces an automated pipeline to evaluate LLM performance on this task, specifically focusing on faithfulness (absence of hallucination), factor utilization, and appropriate abstention. We define hallucination as the generation of factors not present in the input case materials and abstention as the model's ability to refrain from generating arguments when instructed and no factual basis exists. Our automated method employs an external LLM to extract factors from generated arguments and compares them against the ground-truth factors provided in the input case triples (current case and two precedent cases). We evaluated eight distinct LLMs on three tests of increasing difficulty: 1) generating a standard 3-ply argument, 2) generating an argument with swapped precedent roles, and 3) recognizing the impossibility of argument generation due to lack of shared factors and abstaining. Our findings indicate that while current LLMs achieve high accuracy (over 90%) in avoiding hallucination on viable argument generation tests (Tests 1 & 2), they often fail to utilize the full set of relevant factors present in the cases. Critically, on the abstention test (Test 3), most models failed to follow instructions to stop, instead generating spurious arguments despite the lack of common factors. This automated pipeline provides a scalable method for assessing these crucial LLM behaviors, highlighting the need for improvements in factor utilization and robust abstention capabilities before reliable deployment in legal settings. Link: https://lizhang-aiandlaw.github.io/An-Automated-Pipeline-for-Evaluating-LLM-Generated-3-ply-Case-Based-Legal-Arguments/

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com