Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ehrhart Functions of Weighted Lattice Points (2412.17679v2)

Published 23 Dec 2024 in math.CO, math.AC, and math.AG

Abstract: This paper studies three different ways to assign weights to the lattice points of a convex polytope and discusses the algebraic and combinatorial properties of the resulting weighted Ehrhart functions and their generating functions and associated rings. These will be called $q$-weighted, $r$-weighted, and $s$-weighted Ehrhart functions, respectively. The key questions we investigate are \emph{When are the weighted Ehrhart series rational functions and which classical Ehrhart theory properties are preserved? And, when are the abstract formal power series the Hilbert series of Ehrhart rings of some polytope?} We prove generalizations about weighted Ehrhart $h*$-coefficients of $q$-weighted Ehrhart series, and show $q$- and $s$-weighted Ehrhart reciprocity theorems. Then, we show the $q$- and $r$-weighted Ehrhart rings are the (classical) Ehrhart rings of weight lifting polytopes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.