Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

DrivingForward: Feed-forward 3D Gaussian Splatting for Driving Scene Reconstruction from Flexible Surround-view Input (2409.12753v2)

Published 19 Sep 2024 in cs.CV

Abstract: We propose DrivingForward, a feed-forward Gaussian Splatting model that reconstructs driving scenes from flexible surround-view input. Driving scene images from vehicle-mounted cameras are typically sparse, with limited overlap, and the movement of the vehicle further complicates the acquisition of camera extrinsics. To tackle these challenges and achieve real-time reconstruction, we jointly train a pose network, a depth network, and a Gaussian network to predict the Gaussian primitives that represent the driving scenes. The pose network and depth network determine the position of the Gaussian primitives in a self-supervised manner, without using depth ground truth and camera extrinsics during training. The Gaussian network independently predicts primitive parameters from each input image, including covariance, opacity, and spherical harmonics coefficients. At the inference stage, our model can achieve feed-forward reconstruction from flexible multi-frame surround-view input. Experiments on the nuScenes dataset show that our model outperforms existing state-of-the-art feed-forward and scene-optimized reconstruction methods in terms of reconstruction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.