WorldSplat: Gaussian-Centric Feed-Forward 4D Scene Generation for Autonomous Driving (2509.23402v1)
Abstract: Recent advances in driving-scene generation and reconstruction have demonstrated significant potential for enhancing autonomous driving systems by producing scalable and controllable training data. Existing generation methods primarily focus on synthesizing diverse and high-fidelity driving videos; however, due to limited 3D consistency and sparse viewpoint coverage, they struggle to support convenient and high-quality novel-view synthesis (NVS). Conversely, recent 3D/4D reconstruction approaches have significantly improved NVS for real-world driving scenes, yet inherently lack generative capabilities. To overcome this dilemma between scene generation and reconstruction, we propose \textbf{WorldSplat}, a novel feed-forward framework for 4D driving-scene generation. Our approach effectively generates consistent multi-track videos through two key steps: ((i)) We introduce a 4D-aware latent diffusion model integrating multi-modal information to produce pixel-aligned 4D Gaussians in a feed-forward manner. ((ii)) Subsequently, we refine the novel view videos rendered from these Gaussians using a enhanced video diffusion model. Extensive experiments conducted on benchmark datasets demonstrate that \textbf{WorldSplat} effectively generates high-fidelity, temporally and spatially consistent multi-track novel view driving videos.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.