Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach (2409.06728v1)

Published 27 Aug 2024 in q-fin.ST and cs.LG

Abstract: Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis. To capture the complex non-linear relationships between stock prices, we utilize recurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By transforming Cross Recurrence Plot (CRP) data into a time-series format, we enable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks for predicting stock price synchronization through both regression and classification. We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period. The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83 offering valuable insights for developing effective trading strategies and risk management tools.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: