Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Constructions of well-rounded algebraic lattices over odd prime degree cyclic number fields (2409.04839v3)

Published 7 Sep 2024 in math.NT

Abstract: Algebraic lattices are those obtained from modules in the ring of integers of algebraic number fields through the canonical or twisted embeddings. In turn, well-rounded lattices are those with maximal cardinality of linearly independent vectors in its set of minimal vectors. Both classes of lattices have been applied for signal transmission in some channels, such as wiretap channels. Recently, some advances have been made in the search for well-rounded lattices that can be realized as algebraic lattices. Moreover, some works have been published studying algebraic lattices obtained from modules in cyclic number fields of odd prime degree $p$. In this work, we generalize some results of a recent work of Tran et al. and we provide new constructions of well-rounded algebraic lattices from a certain family of modules in the ring of integers of each of these fields when $p$ is ramified in its extension over the field of rational numbers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: