Well-Rounded ideal lattices of cyclic cubic and quartic fields (2303.16968v3)
Abstract: In this paper, we find criteria for when cyclic cubic and cyclic quartic fields have well-rounded ideal lattices. We show that every cyclic cubic field has at least one well-rounded ideal. We also prove that there exist families of cyclic quartic fields which have well-rounded ideals and explicitly construct their minimal bases. In addition, for a given prime number $p$, if a cyclic quartic field has a unique prime ideal above $p$, then we provide the necessary and sufficient conditions for that ideal to be well-rounded. Moreover, in cyclic quartic fields, we provide the prime decomposition of all odd prime numbers and construct an explicit integral basis for every prime ideal.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.