On well-rounded ideal lattices (1101.4442v3)
Abstract: We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study the well-rounded lattices coming from ideals in quadratic rings of integers, showing that there exist infinitely many real and imaginary quadratic number fields containing ideals which give rise to well-rounded lattices in the plane.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.