Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning (2408.13482v2)

Published 24 Aug 2024 in cs.LG and cs.AI

Abstract: Determining the optimal size of a neural network is critical, as it directly impacts runtime performance and memory usage. Pruning is a well-established model compression technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation. However, many recent pruning methods overlook the global contributions of individual model components, making it difficult to ensure that a pruned model meets the desired dataset and performance requirements. To address these challenges, we developed a new pruning algorithm, MPruner, that leverages mutual information through vector similarity. MPruner utilizes layer clustering with the Centered Kernel Alignment (CKA) similarity metric, allowing us to incorporate global information from the neural network for more precise and efficient layer-wise pruning. We evaluated MPruner across various architectures and configurations, demonstrating its versatility and providing practical guidelines. MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.