Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Interpretable Fair Representations (2406.16698v1)

Published 24 Jun 2024 in cs.LG and cs.CY

Abstract: Numerous approaches have been recently proposed for learning fair representations that mitigate unfair outcomes in prediction tasks. A key motivation for these methods is that the representations can be used by third parties with unknown objectives. However, because current fair representations are generally not interpretable, the third party cannot use these fair representations for exploration, or to obtain any additional insights, besides the pre-contracted prediction tasks. Thus, to increase data utility beyond prediction tasks, we argue that the representations need to be fair, yet interpretable. We propose a general framework for learning interpretable fair representations by introducing an interpretable "prior knowledge" during the representation learning process. We implement this idea and conduct experiments with ColorMNIST and Dsprite datasets. The results indicate that in addition to being interpretable, our representations attain slightly higher accuracy and fairer outcomes in a downstream classification task compared to state-of-the-art fair representations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tianhao Wang (98 papers)
  2. Zana Buçinca (9 papers)
  3. Zilin Ma (7 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com