Papers
Topics
Authors
Recent
2000 character limit reached

Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks

Published 1 Sep 2021 in cs.LG, cs.CV, and cs.CY | (2109.00545v2)

Abstract: Motivated by scenarios where data is used for diverse prediction tasks, we study whether fair representation can be used to guarantee fairness for unknown tasks and for multiple fairness notions simultaneously. We consider seven group fairness notions that cover the concepts of independence, separation, and calibration. Against the backdrop of the fairness impossibility results, we explore approximate fairness. We prove that, although fair representation might not guarantee fairness for all prediction tasks, it does guarantee fairness for an important subset of tasks -- the tasks for which the representation is discriminative. Specifically, all seven group fairness notions are linearly controlled by fairness and discriminativeness of the representation. When an incompatibility exists between different fairness notions, fair and discriminative representation hits the sweet spot that approximately satisfies all notions. Motivated by our theoretical findings, we propose to learn both fair and discriminative representations using pretext loss which self-supervises learning, and Maximum Mean Discrepancy as a fair regularizer. Experiments on tabular, image, and face datasets show that using the learned representation, downstream predictions that we are unaware of when learning the representation indeed become fairer for seven group fairness notions, and the fairness guarantees computed from our theoretical results are all valid.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.