Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bivariate phase-type distributions for experience rating in disability insurance (2405.19248v2)

Published 29 May 2024 in math.ST and stat.TH

Abstract: In this paper, we consider the problem of experience rating within the classic Markov chain life insurance framework. We begin by investigating various multivariate mixed Poisson models with mixing distributions encompassing independent Gamma, hierarchical Gamma, and multivariate phase-type. In particular, we demonstrate how maximum likelihood estimation for these proposed models can be performed using expectation-maximization algorithms, which might be of independent interest. Subsequently, we establish a link between mixed Poisson distributions and the problem of pricing group disability insurance contracts that exhibit heterogeneity. We focus on shrinkage estimation of disability and recovery rates, taking into account sampling effects such as right-censoring. Finally, we showcase the practicality of these shrinkage estimators through a numerical study based on simulated yet realistic insurance data. Our findings highlight that by allowing for dependency between latent group effects, estimates of recovery and disability rates mutually improve, leading to enhanced predictive performance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.