Symmetry-restored Skyrme-Random-Phase-Approximation calculations of the monopole strength in deformed nuclei (2312.10410v2)
Abstract: Within the Energy Density Functional (EDF) approach, the use of mean-field wave-functions deliberately breaking (some) symmetries of the underlying Hamiltonian is an efficient and largely utilized way to incorporate static correlations. However, the restoration of broken symmetries is eventually mandatory to recover the corresponding quantum numbers and to achieve a more precise description of nuclear properties. While symmetry-restored calculations are routinely performed to study ground-state properties and low-lying excitations, similar applications to the nuclear response are essentially limited to either formal studies or to schematic models. In the present paper, the effect of angular momentum restoration on the monopole and quadrupole responses of doubly open-shell nuclei is investigated. Based on deformed Skyrme-Random Phase Approximation (RPA) calculations, the exact Angular Momentum Projection (AMP) is implemented in the calculation of the multipole strength functions, thus defining a projection after variation (PAV-RPA) scheme. The method is employed for the first time in a realistic study to investigate the effect of AMP on the coupling of monopole and quadrupole modes in ${24}$Mg resulting from its intrinsic deformation.
- T. Duguet, in The Euroschool on Exotic Beams, Vol. IV (Springer, 2014) pp. 293–350.
- N. Schunck, ed., Energy Density Functional Methods for Atomic Nuclei (IoP Publishing, 2019).
- G. Colò, Adv. Phys. X 5, 1740061 (2020).
- V. Somà, T. Duguet, and C. Barbieri, Phys. Rev. C 84, 064317 (2011).
- A. Tichai, P. Demol, and T. Duguet, arXiv:2307.15619 [nucl-th] (2023).
- T. Duguet, J. Phys. G 42, 025107 (2015).
- T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), [Erratum: J.Phys.G 44, 049601 (2017)].
- P. Ring and P. Schuck, The nuclear many-body problem (Springer Berlin, Heidelberg, 2004).
- R. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964).
- D. Gambacurta and D. Lacroix, Phys. Rev. C 86, 064320 (2012).
- D. Thouless, Nuclear Physics 22, 78 (1961).
- G. E. Brown, Unified theory of nuclear models (North-Holland Amsterdam; Interscience (Wiley), New York, 1964).
- A. Lane and J. Martorell, Annals Phys. 129, 273 (1980).
- C. Federschmidt and P. Ring, Nucl. Phys. A 435, 110 (1985).
- D. P. Arteaga and P. Ring, Phys. Rev. C 77, 034317 (2008).
- S. Péru and M. Martini, Eur. Phys. J. A 50, 88 (2014).
- F. Villars, Proc. Int. School of Physics “Enrico Fermi”, Course 36 (1966).
- B. Erler and R. Roth, arXiv:1409.0826 [nucl-th] (2014).
- J. P. Blaizot, Phys. Rep. 64, 171 (1980).
- U. Garg and G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018).
- Z. Z. Li, Y. F. Niu, and G. Colò, Phys. Rev. Lett. 131, 082501 (2023).
- D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
- D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009).
- M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009).
- W. Satula and J. Dobaczewski, Phys. Rev. C 90, 054303 (2014).
- A. Porro, Ab initio description of monopole resonances in light-and medium-mass nuclei, Ph.D. thesis, Université Paris-Saclay (2023).
- A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975).
- J. Li, G. Colò, and J. Meng, Phys. Rev. C 78, 064304 (2008).
- B. Jancovici and D. H. Schiff, Nucl. Phys. 58, 678 (1964).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.