Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback (2403.18768v2)

Published 27 Mar 2024 in quant-ph

Abstract: Quantum entanglement is one of the primary features which distinguishes quantum computers from classical computers. In gate-based quantum computing, the creation of entangled states or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits. However, in teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits, provided that one has access to an entangled resource state, the ability to perform mid-circuit measurements, and can rapidly transmit classical information. In this work, aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we explore the utility of teleportation-based protocols for generating non-local, multi-partite entanglement between superconducting qubits. First, we demonstrate well-known protocols for generating Greenberger-Horne-Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in constant depth between three non-local qubits. Finally, we demonstrate deterministic state teleportation and entanglement swapping between qubits on opposite side of our quantum processor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
  2. J. Preskill, Quantum 2, 79 (2018).
  3. H. J. Briegel and R. Raussendorf, Physical Review Letters 86, 910 (2001).
  4. N. D. Mermin, Am. J. Phys 58, 731 (1990).
  5. P. Shor, in Proceedings of 37th Conference on Foundations of Computer Science (1996) pp. 56–65.
  6. W. Dür and J. Cirac, Journal of Physics A: Mathematical and General 34, 6837 (2001).
  7. O. Gühne and M. Seevinck, New Journal of Physics 12, 053002 (2010).
  8. H. J. Kimble, Nature 453, 1023 (2008).
  9. N. P. Breuckmann and J. N. Eberhardt, PRX Quantum 2, 040101 (2021).
  10. Q. Xu, J. P. B. Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein, J. Wurtz, B. Vasic, M. D. Lukin, L. Jiang,  and H. Zhou, “Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays,”  (2023b), arXiv:2308.08648 [quant-ph] .
  11. P. Høyer and R. Špalek, Theory of computing 1, 81 (2005).
  12. P. W. Shor, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134.
  13. D. Coppersmith, arXiv preprint quant-ph/0201067  (2002).
  14. Y. Takahashi and S. Tani, computational complexity 25, 849 (2016).
  15. G. Rosenthal, “Query and Depth Upper Bounds for Quantum Unitaries via Grover Search,”  (2023), arXiv:2111.07992 [quant-ph].
  16. H. Buhrman, M. Folkertsma, B. Loff,  and N. M. P. Neumann, “State preparation by shallow circuits using feed forward,”  (2023), arXiv:2307.14840 [quant-ph].
  17. M. Mastriani, Scientific Reports 13, 21998 (2023).
  18. A. Maudsley, Journal of Magnetic Resonance (1969) 69, 488 (1986).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: