Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Factor-Based Spot Volatility Matrices with Noisy and Asynchronous High-Frequency Data (2403.06246v1)

Published 10 Mar 2024 in econ.EM and stat.ME

Abstract: We propose a new estimator of high-dimensional spot volatility matrices satisfying a low-rank plus sparse structure from noisy and asynchronous high-frequency data collected for an ultra-large number of assets. The noise processes are allowed to be temporally correlated, heteroskedastic, asymptotically vanishing and dependent on the efficient prices. We define a kernel-weighted pre-averaging method to jointly tackle the microstructure noise and asynchronicity issues, and we obtain uniformly consistent estimates for latent prices. We impose a continuous-time factor model with time-varying factor loadings on the price processes, and estimate the common factors and loadings via a local principal component analysis. Assuming a uniform sparsity condition on the idiosyncratic volatility structure, we combine the POET and kernel-smoothing techniques to estimate the spot volatility matrices for both the latent prices and idiosyncratic errors. Under some mild restrictions, the estimated spot volatility matrices are shown to be uniformly consistent under various matrix norms. We provide Monte-Carlo simulation and empirical studies to examine the numerical performance of the developed estimation methodology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com