Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Volatility Matrix Prediction using Tensor Factor Structure (2412.04293v2)

Published 5 Dec 2024 in econ.EM

Abstract: Several approaches for predicting large volatility matrices have been developed based on high-dimensional factor-based It^o processes. These methods often impose restrictions to reduce the model complexity, such as constant eigenvectors or factor loadings over time. However, several studies indicate that eigenvector processes are also time-varying. To address this feature, this paper generalizes the factor structure by representing the integrated volatility matrix process as a cubic (order-3 tensor) form, which is decomposed into low-rank tensor and idiosyncratic tensor components. To predict conditional expected large volatility matrices, we propose the Projected Tensor Principal Orthogonal componEnt Thresholding (PT-POET) procedure and establish its asymptotic properties. The advantages of PT-POET are validated through a simulation study and demonstrated in an application to minimum variance portfolio allocation using high-frequency trading data.

Summary

We haven't generated a summary for this paper yet.