Papers
Topics
Authors
Recent
2000 character limit reached

Kernel Estimation of Spot Volatility with Microstructure Noise Using Pre-Averaging

Published 4 Apr 2020 in econ.EM, math.ST, q-fin.ST, and stat.TH | (2004.01865v3)

Abstract: We first revisit the problem of estimating the spot volatility of an It^o semimartingale using a kernel estimator. We prove a Central Limit Theorem with optimal convergence rate for a general two-sided kernel. Next, we introduce a new pre-averaging/kernel estimator for spot volatility to handle the microstructure noise of ultra high-frequency observations. We prove a Central Limit Theorem for the estimation error with an optimal rate and study the optimal selection of the bandwidth and kernel functions. We show that the pre-averaging/kernel estimator's asymptotic variance is minimal for exponential kernels, hence, justifying the need of working with kernels of unbounded support as proposed in this work. We also develop a feasible implementation of the proposed estimators with optimal bandwidth. Monte Carlo experiments confirm the superior performance of the devised method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.