Time-uniform log-Sobolev inequalities and applications to propagation of chaos (2401.07966v3)
Abstract: Time-uniform log-Sobolev inequalities (LSI) satisfied by solutions of semi-linear mean-field equations have recently appeared to be a key tool to obtain time-uniform propagation of chaos estimates. This work addresses the more general settings of time-inhomogeneous Fokker-Planck equations. Time-uniform LSI are obtained in two cases, either with the bounded-Lipschitz perturbation argument with respect to a reference measure, or with a coupling approach at high temperature. These arguments are then applied to mean-field equations, where, on the one hand, sharp marginal propagation of chaos estimates are obtained in smooth cases and, on the other hand, time-uniform global propagation of chaos is shown in the case of vortex interactions with quadratic confinement potential on the whole space. In this second case, an important point is to establish global gradient and Hessian estimates, which is of independent interest. We prove these bounds in the more general situation of non-attractive logarithmic and Riesz singular interactions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.