Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Federated Hyperdimensional Computing (2312.15966v1)

Published 26 Dec 2023 in cs.LG and cs.DC

Abstract: Federated learning (FL) enables a loose set of participating clients to collaboratively learn a global model via coordination by a central server and with no need for data sharing. Existing FL approaches that rely on complex algorithms with massive models, such as deep neural networks (DNNs), suffer from computation and communication bottlenecks. In this paper, we first propose FedHDC, a federated learning framework based on hyperdimensional computing (HDC). FedHDC allows for fast and light-weight local training on clients, provides robust learning, and has smaller model communication overhead compared to learning with DNNs. However, current HDC algorithms get poor accuracy when classifying larger & more complex images, such as CIFAR10. To address this issue, we design FHDnn, which complements FedHDC with a self-supervised contrastive learning feature extractor. We avoid the transmission of the DNN and instead train only the HDC learner in a federated manner, which accelerates learning, reduces transmission cost, and utilizes the robustness of HDC to tackle network errors. We present a formal analysis of the algorithm and derive its convergence rate both theoretically, and show experimentally that FHDnn converges 3$\times$ faster vs. DNNs. The strategies we propose to improve the communication efficiency enable our design to reduce communication costs by 66$\times$ vs. DNNs, local client compute and energy consumption by ~1.5 - 6$\times$, while being highly robust to network errors. Finally, our proposed strategies for improving the communication efficiency have up to 32$\times$ lower communication costs with good accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. IDC, “The Growth in Connected IoT Devices,” 2019. [Online].
  2. A. Goldsmith, Wireless communications. Cambridge university press, 2005.
  3. Pearson Education India, 2005.
  4. P. Kanerva, “What we mean when we say” what’s the dollar of mexico?”: Prototypes and mapping in concept space,” in 2010 AAAI fall symposium series, 2010.
  5. F. Asgarinejad, A. Thomas, and T. Rosing, “Detection of epileptic seizures from surface eeg using hyperdimensional computing,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 536–540, IEEE, 2020.
  6. M. Imani, S. Bosch, M. Javaheripi, B. Rouhani, X. Wu, F. Koushanfar, and T. Rosing, “Semihd: Semi-supervised learning using hyperdimensional computing,” in 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2019.
  7. M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional computing for energy efficient classification,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.
  8. M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing for efficient speech recognition,” in 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, IEEE, 2017.
  9. O. J. Räsänen and J. P. Saarinen, “Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns,” IEEE transactions on neural networks and learning systems, vol. 27, no. 9, pp. 1878–1889, 2015.
  10. B. Khaleghi, J. Kang, H. Xu, J. Morris, and T. Rosing, “Generic: highly efficient learning engine on edge using hyperdimensional computing,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, pp. 1117–1122, 2022.
  11. J. Morris, K. Ergun, B. Khaleghi, M. Imani, B. Aksanli, and T. Rosing, “Hydrea: Utilizing hyperdimensional computing for a more robust and efficient machine learning system,” ACM Transactions on Embedded Computing Systems (TECS), 2022.
  12. B. Khaleghi, H. Xu, J. Morris, and T. Š. Rosing, “tiny-hd: Ultra-efficient hyperdimensional computing engine for iot applications,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 408–413, IEEE, 2021.
  13. A. Thomas, S. Dasgupta, and T. Rosing, “Theoretical foundations of hyperdimensional computing,” Journal of Artificial Intelligence Research, vol. 72, pp. 215–249, 2021.
  14. M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-based encoding for energy-efficient brain-inspired hyperdimensional computing,” in Proceedings of the 56th Annual Design Automation Conference 2019.
  15. Z. Zou, Y. Kim, M. H. Najafi, and M. Imani, “Manihd: Efficient hyper-dimensional learning using manifold trainable encoder,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 850–855, IEEE, 2021.
  16. A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and T. Rosing, “Hdnn-pim: Efficient in memory design of hyperdimensional computing with feature extraction,” in Proceedings of the Great Lakes Symposium on VLSI 2022, pp. 281–286, 2022.
  17. M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing, “A framework for collaborative learning in secure high-dimensional space,” in 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 435–446, 2019.
  18. A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and T. Rosing, “Hdnn-pim: Efficient in memory design of hyperdimensional computing with feature extraction,” in Proceedings of the Great Lakes Symposium on VLSI 2022, GLSVLSI ’22, (New York, NY, USA), p. 281–286, Association for Computing Machinery, 2022.
  19. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning, pp. 1597–1607, PMLR, 2020.
  20. J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for improving communication efficiency,” arXiv preprint arXiv:1610.05492, 2016.
  21. A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization,” in International Conference on Artificial Intelligence and Statistics, pp. 2021–2031, PMLR, 2020.
  22. Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas, “Model pruning enables efficient federated learning on edge devices,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  23. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.
  24. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated learning,” in International Conference on Machine Learning, pp. 5132–5143, PMLR, 2020.
  25. M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.
  26. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks with binary weights during propagations,” Advances in neural information processing systems, vol. 28, 2015.
  27. D. Oktay, J. Ballé, S. Singh, and A. Shrivastava, “Scalable model compression by entropy penalized reparameterization,” arXiv preprint arXiv:1906.06624, 2019.
  28. S. Horváth, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and P. Richtárik, “Natural compression for distributed deep learning,” arXiv preprint arXiv:1905.10988, 2019.
  29. J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-efficient distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  30. J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.
  31. S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the reach of federated learning by reducing client resource requirements,” arXiv preprint arXiv:1812.07210, 2018.
  32. A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan, “Distributed mean estimation with limited communication,” in International Conference on Machine Learning, pp. 3329–3337, PMLR, 2017.
  33. J. Konečnỳ and P. Richtárik, “Randomized distributed mean estimation: Accuracy vs. communication,” Frontiers in Applied Mathematics and Statistics, p. 62, 2018.
  34. R. Balakrishnan, M. Akdeniz, S. Dhakal, and N. Himayat, “Resource management and fairness for federated learning over wireless edge networks,” in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, IEEE, 2020.
  35. W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for federated learning,” arXiv preprint arXiv:2010.13723, 2020.
  36. R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes, “Diverse client selection for federated learning via submodular maximization,” in International Conference on Learning Representations, 2021.
  37. T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated gradient for communication-efficient distributed learning,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  38. A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and emerging technologies,” IEEE access, vol. 3, pp. 1206–1232, 2015.
  39. Z. Xu, F. Yu, J. Xiong, and X. Chen, “Helios: heterogeneity-aware federated learning with dynamically balanced collaboration,” in 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 997–1002, IEEE, 2021.
  40. H.-P. Wang, S. U. Stich, Y. He, and M. Fritz, “Progfed: Effective, communication, and computation efficient federated learning by progressive training,” arXiv preprint arXiv:2110.05323, 2021.
  41. C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “Splitfed: When federated learning meets split learning,” arXiv preprint arXiv:2004.12088, 2020.
  42. P. Kanerva, J. Kristoferson, and A. Holst, “Random indexing of text samples for latent semantic analysis,” in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 22, 2000.
  43. A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using brain-inspired hyperdimensional computing,” in Proceedings of the 2016 international symposium on low power electronics and design, pp. 64–69, 2016.
  44. P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors,” Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.
  45. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.
  46. S. U. Stich, “Local sgd converges fast and communicates little,” arXiv preprint arXiv:1805.09767, 2018.
  47. A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in neural information processing systems, pp. 1177–1184, 2008.
  48. P. Kanerva, Sparse Distributed Memory. MIT Press, 1988.
  49. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
  50. M. Gastpar, “Uncoded transmission is exactly optimal for a simple gaussian “sensor” network,” IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5247–5251, 2008.
  51. X. Wei and C. Shen, “Federated learning over noisy channels: Convergence analysis and design examples,” IEEE Transactions on Cognitive Communications and Networking, 2022.
  52. Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video coding techniques,” IEEE signal processing magazine, vol. 17, no. 4, pp. 61–82, 2000.
  53. “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
  54. J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd: Compressed optimisation for non-convex problems,” in International Conference on Machine Learning, pp. 560–569, PMLR, 2018.
  55. L. Lu and Y. Liang, “Spwa: An efficient sparse winograd convolutional neural networks accelerator on fpgas,” in Proceedings of the 55th Annual Design Automation Conference, pp. 1–6, 2018.
  56. L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
  57. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” 2017.
  58. A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.
  59. F.-F. Li, M. Andreeto, M. Ranzato, and P. Perona, “Caltech 101,” Apr 2022.
  60. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  61. R. Pi, “Raspberry pi 4.” https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
  62. N. Corporation, “Nvidia jetson.” https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

Summary

We haven't generated a summary for this paper yet.