Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Session-Based Recommendation by Exploiting Substitutable and Complementary Relationships from Multi-behavior Data (2312.14957v2)

Published 13 Dec 2023 in cs.IR

Abstract: Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while those few considering multi-typed behaviors ignore to take full advantage of the relationships between products (items). In this case, the paper proposes a novel approach, called Substitutable and Complementary Relationships from Multi-behavior Data (denoted as SCRM) to better explore the relationships between products for effective recommendation. Specifically, we firstly construct substitutable and complementary graphs based on a user's sequential behaviors in every session by jointly considering click' andpurchase' behaviors. We then design a denoising network to remove false relationships, and further consider constraints on the two relationships via a particularly designed loss function. Extensive experiments on two e-commerce datasets demonstrate the superiority of our model over state-of-the-art methods, and the effectiveness of every component in SCRM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huizi Wu (4 papers)
  2. Cong Geng (9 papers)
  3. Hui Fang (48 papers)