Smooth Cartan triples and Lie twists over Hausdorff étale Lie groupoids (2309.09177v3)
Abstract: We describe how to recover a Lie structure on a twist over a Hausdorff \'etale groupoid from functional-analytic data in the spirit of Connes' reconstruction theorem for manifolds. We first characterise when a smooth structure on the unit space of a Hausdorff \'etale groupoid can be extended to a Lie-groupoid structure on the whole groupoid. We introduce Lie twists over Hausdorff Lie groupoids, building on Kumjian's notion of a twist over a topological groupoid. We establish necessary and sufficient conditions on a family of sections of a twist over a Lie groupoid under which the twist can be made into a Lie twist so that all the specified sections are smooth. We use these results in the setting of twists over \'etale groupoids to describe conditions on a Cartan pair of C*-algebras and a family of normalisers of the subalgebra, under which Renault's Weyl twist for the pair can be made into a Lie twist for which the given normalisers correspond to smooth sections.
- Becky Armstrong “A uniqueness theorem for twisted groupoid C*-algebras” In J. Funct. Anal. 283.6, 2022, pp. Paper No. 109551\bibrangessep33 DOI: 10.1016/j.jfa.2022.109551
- “S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-bundles and gerbes over differentiable stacks” In C. R. Math. Acad. Sci. Paris 336.2, 2003, pp. 163–168 DOI: 10.1016/S1631-073X(02)00025-0
- “Reconstruction of groupoids and C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-rigidity of dynamical systems” In Adv. Math. 390, 2021, pp. Paper No. 107923\bibrangessep55 DOI: 10.1016/j.aim.2021.107923
- Lawrence Conlon “Differentiable manifolds”, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Boston, Inc., Boston, MA, 2001, pp. xiv+418 DOI: 10.1007/978-0-8176-4767-4
- Alain Connes “Gravity coupled with matter and the foundation of non-commutative geometry” In Comm. Math. Phys. 182.1, 1996, pp. 155–176 URL: http://projecteuclid.org.ezproxy.uow.edu.au/euclid.cmp/1104288023
- Alain Connes “On the spectral characterization of manifolds” In J. Noncommut. Geom. 7.1, 2013, pp. 1–82 DOI: 10.4171/JNCG/108
- “Alexandrov groupoids and the nuclear dimension of twisted groupoid C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Funct. Anal., 2024, pp. 110372 DOI: https://doi.org/10.1016/j.jfa.2024.110372
- Jean-Paul Dufour and Nguyen Tien Zung “Poisson structures and their normal forms” 242, Progress in Mathematics Birkhäuser Verlag, Basel, 2005, pp. xvi+321 DOI: 10.1007/3-7643-7335-0
- “Cartan subalgebras for non-principal twisted groupoid C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Funct. Anal. 279.6, 2020 DOI: 10.1016/j.jfa.2020.108611
- Anna Duwenig, Dana P. Williams and Joel Zimmerman “Renault’s j𝑗jitalic_j-map for Fell bundle C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Math. Anal. Appl. 516.2, 2022, pp. Paper No. 126530\bibrangessep15 DOI: 10.1016/j.jmaa.2022.126530
- Ruy Exel “Inverse semigroups and combinatorial C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras” In Bull. Braz. Math. Soc. (N.S.) 39.2, 2008, pp. 191–313 DOI: 10.1007/s00574-008-0080-7
- Marco Gualtieri “Smooth manifolds”, 2009 URL: http://www.math.toronto.edu/mgualt/wiki/Notes1-36.pdf
- Alexander Kumjian “On C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-diagonals” In Canad. J. Math. 38.4, 1986, pp. 969–1008 DOI: 10.4153/CJM-1986-048-0
- John M. Lee “Introduction to smooth manifolds” 218, Graduate Texts in Mathematics Springer, New York, 2013, pp. xvi+708
- Kirill C.H. Mackenzie “General theory of Lie groupoids and Lie algebroids” 213, London Mathematical Society Lecture Note Series Cambridge University Press, Cambridge, 2005, pp. xxxviii+501 DOI: 10.1017/CBO9781107325883
- “Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group” In Adv. Geom. 9.4, 2009, pp. 605–626 DOI: 10.1515/ADVGEOM.2009.032
- David R. Pitts “Normalizers and approximate units for inclusions of C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In Indiana Univ. Math. J. 72, 2023, pp. 1849–1866
- Jean Renault “A groupoid approach to C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” 793, Lecture Notes in Mathematics Springer, Berlin, 1980, pp. ii+160
- Jean Renault “Cartan subalgebras in C*-algebras” In Irish Math. Soc. Bull., 2008, pp. 29–63
- A. Rennie “Commutative geometries are spin manifolds” In Rev. Math. Phys. 13.4, 2001, pp. 409–464 DOI: 10.1142/S0129055X01000673
- Adam Rennie and Joseph C. Varilly “Reconstruction of manifolds in noncommutative geometry”, 2008 arXiv:math/0610418 [math.OA]
- Aidan Sims, Gábor Szabó and Dana P. Williams “Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension”, Advanced Courses in Mathematics. CRM Barcelona Birkhäuser/Springer, Cham, 2020, pp. x+163 DOI: 10.1007/978-3-030-39713-5
- Loring W. Tu “An introduction to manifolds”, Universitext Springer, New York, 2011, pp. xviii+411 DOI: 10.1007/978-1-4419-7400-6
- Dana P. Williams “A tool kit for groupoid C*superscript𝐶\mathit{C}^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” 241, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2019, pp. xv+398 DOI: 10.1016/j.physletb.2019.06.021
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.