Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Smooth Cartan triples and Lie twists over Hausdorff étale Lie groupoids (2309.09177v3)

Published 17 Sep 2023 in math.OA and math.DG

Abstract: We describe how to recover a Lie structure on a twist over a Hausdorff \'etale groupoid from functional-analytic data in the spirit of Connes' reconstruction theorem for manifolds. We first characterise when a smooth structure on the unit space of a Hausdorff \'etale groupoid can be extended to a Lie-groupoid structure on the whole groupoid. We introduce Lie twists over Hausdorff Lie groupoids, building on Kumjian's notion of a twist over a topological groupoid. We establish necessary and sufficient conditions on a family of sections of a twist over a Lie groupoid under which the twist can be made into a Lie twist so that all the specified sections are smooth. We use these results in the setting of twists over \'etale groupoids to describe conditions on a Cartan pair of C*-algebras and a family of normalisers of the subalgebra, under which Renault's Weyl twist for the pair can be made into a Lie twist for which the given normalisers correspond to smooth sections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Becky Armstrong “A uniqueness theorem for twisted groupoid C*-algebras” In J. Funct. Anal. 283.6, 2022, pp. Paper No. 109551\bibrangessep33 DOI: 10.1016/j.jfa.2022.109551
  2. “S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-bundles and gerbes over differentiable stacks” In C. R. Math. Acad. Sci. Paris 336.2, 2003, pp. 163–168 DOI: 10.1016/S1631-073X(02)00025-0
  3. “Reconstruction of groupoids and C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-rigidity of dynamical systems” In Adv. Math. 390, 2021, pp. Paper No. 107923\bibrangessep55 DOI: 10.1016/j.aim.2021.107923
  4. Lawrence Conlon “Differentiable manifolds”, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Boston, Inc., Boston, MA, 2001, pp. xiv+418 DOI: 10.1007/978-0-8176-4767-4
  5. Alain Connes “Gravity coupled with matter and the foundation of non-commutative geometry” In Comm. Math. Phys. 182.1, 1996, pp. 155–176 URL: http://projecteuclid.org.ezproxy.uow.edu.au/euclid.cmp/1104288023
  6. Alain Connes “On the spectral characterization of manifolds” In J. Noncommut. Geom. 7.1, 2013, pp. 1–82 DOI: 10.4171/JNCG/108
  7. “Alexandrov groupoids and the nuclear dimension of twisted groupoid C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Funct. Anal., 2024, pp. 110372 DOI: https://doi.org/10.1016/j.jfa.2024.110372
  8. Jean-Paul Dufour and Nguyen Tien Zung “Poisson structures and their normal forms” 242, Progress in Mathematics Birkhäuser Verlag, Basel, 2005, pp. xvi+321 DOI: 10.1007/3-7643-7335-0
  9. “Cartan subalgebras for non-principal twisted groupoid C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Funct. Anal. 279.6, 2020 DOI: 10.1016/j.jfa.2020.108611
  10. Anna Duwenig, Dana P. Williams and Joel Zimmerman “Renault’s j𝑗jitalic_j-map for Fell bundle C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In J. Math. Anal. Appl. 516.2, 2022, pp. Paper No. 126530\bibrangessep15 DOI: 10.1016/j.jmaa.2022.126530
  11. Ruy Exel “Inverse semigroups and combinatorial C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras” In Bull. Braz. Math. Soc. (N.S.) 39.2, 2008, pp. 191–313 DOI: 10.1007/s00574-008-0080-7
  12. Marco Gualtieri “Smooth manifolds”, 2009 URL: http://www.math.toronto.edu/mgualt/wiki/Notes1-36.pdf
  13. Alexander Kumjian “On C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-diagonals” In Canad. J. Math. 38.4, 1986, pp. 969–1008 DOI: 10.4153/CJM-1986-048-0
  14. John M. Lee “Introduction to smooth manifolds” 218, Graduate Texts in Mathematics Springer, New York, 2013, pp. xvi+708
  15. Kirill C.H. Mackenzie “General theory of Lie groupoids and Lie algebroids” 213, London Mathematical Society Lecture Note Series Cambridge University Press, Cambridge, 2005, pp. xxxviii+501 DOI: 10.1017/CBO9781107325883
  16. “Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group” In Adv. Geom. 9.4, 2009, pp. 605–626 DOI: 10.1515/ADVGEOM.2009.032
  17. David R. Pitts “Normalizers and approximate units for inclusions of C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” In Indiana Univ. Math. J. 72, 2023, pp. 1849–1866
  18. Jean Renault “A groupoid approach to C*superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” 793, Lecture Notes in Mathematics Springer, Berlin, 1980, pp. ii+160
  19. Jean Renault “Cartan subalgebras in C*-algebras” In Irish Math. Soc. Bull., 2008, pp. 29–63
  20. A. Rennie “Commutative geometries are spin manifolds” In Rev. Math. Phys. 13.4, 2001, pp. 409–464 DOI: 10.1142/S0129055X01000673
  21. Adam Rennie and Joseph C. Varilly “Reconstruction of manifolds in noncommutative geometry”, 2008 arXiv:math/0610418 [math.OA]
  22. Aidan Sims, Gábor Szabó and Dana P. Williams “Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension”, Advanced Courses in Mathematics. CRM Barcelona Birkhäuser/Springer, Cham, 2020, pp. x+163 DOI: 10.1007/978-3-030-39713-5
  23. Loring W. Tu “An introduction to manifolds”, Universitext Springer, New York, 2011, pp. xviii+411 DOI: 10.1007/978-1-4419-7400-6
  24. Dana P. Williams “A tool kit for groupoid C*superscript𝐶\mathit{C}^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras” 241, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2019, pp. xv+398 DOI: 10.1016/j.physletb.2019.06.021

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: