Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Media Moments and Corporate Connections: A Deep Learning Approach to Stock Movement Classification (2309.06559v1)

Published 8 Sep 2023 in q-fin.ST, cs.SI, and q-fin.CP

Abstract: The financial industry poses great challenges with risk modeling and profit generation. These entities are intricately tied to the sophisticated prediction of stock movements. A stock forecaster must untangle the randomness and ever-changing behaviors of the stock market. Stock movements are influenced by a myriad of factors, including company history, performance, and economic-industry connections. However, there are other factors that aren't traditionally included, such as social media and correlations between stocks. Social platforms such as Reddit, Facebook, and X (Twitter) create opportunities for niche communities to share their sentiment on financial assets. By aggregating these opinions from social media in various mediums such as posts, interviews, and news updates, we propose a more holistic approach to include these "media moments" within stock market movement prediction. We introduce a method that combines financial data, social media, and correlated stock relationships via a graph neural network in a hierarchical temporal fashion. Through numerous trials on current S&P 500 index data, with results showing an improvement in cumulative returns by 28%, we provide empirical evidence of our tool's applicability for use in investment decisions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Luke Sanborn (1 paper)
  2. Matthew Sahagun (1 paper)

Summary

We haven't generated a summary for this paper yet.