Hilbert functions and Jordan type of Perazzo Artinian algebras (2303.16768v1)
Abstract: We study Hilbert functions, Lefschetz properties, and Jordan type of Artinian Gorenstein algebras associated to Perazzo hypersurfaces in projective space. The main focus lies on Perazzo threefolds, for which we prove that the Hilbert functions are always unimodal. Further we prove that the Hilbert function determines whether the algebra is weak Lefschetz, and we characterize those Hilbert functions for which the weak Lefschetz property holds. By example, we verify that the Hilbert functions of Perazzo fourfolds are not always unimodal. In the particular case of Perazzo threefolds with the smallest possible Hilbert function, we give a description of the possible Jordan types for multiplication by any linear form.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.