The Weak Lefschetz property and unimodality of Hilbert functions of random monomial algebras (2402.17618v1)
Abstract: In this work, we investigate the presence of the weak Lefschetz property (WLP) and Hilbert functions for various types of random standard graded Artinian algebras. If an algebra has the WLP then its Hilbert function is unimodal. Using probabilistic models for random monomial algebras, our results and simulations suggest that in each considered regime the Hilbert functions of the produced algebras are unimodal with high probability. The WLP appears to be present with high probability most of the time. However, we propose that there is one scenario where the generated algebras fail to have the WLP with high probability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.