Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Perazzo $n$-folds and the weak Lefschetz property (2405.14756v1)

Published 23 May 2024 in math.AC and math.AG

Abstract: In this paper, we determine the maximum $h_{max}$ and the minimum $h_{min}$ of the Hilbert vectors of Perazzo algebras $A_F$, where $F$ is a Perazzo polynomial of degree $d$ in $n+m+1$ variables. These algebras always fail the Strong Lefschetz Property. We determine the integers $n,m,d$ such that $h_{max}$ (resp. $h_{min}$) is unimodal, and we prove that $A_F$ always fails the Weak Lefschetz Property if its Hilbert vector is maximum, while it satisfies the Weak Lefschetz Property if it is minimum, unimodal, and satisfies an additional mild condition. We determine the minimal free resolution of Perazzo algebras associated to Perazzo threefolds in $\mathbb P4$ with minimum Hilbert vectors. Finally we pose some open problems in this context. Dedicated to Enrique Arrondo on the occasion of his $60{th}$ birthday.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: