Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the logarithmic derivative of characteristic polynomials for random unitary matrices (2211.14625v5)

Published 26 Nov 2022 in math.NT, math-ph, and math.MP

Abstract: Let $U\in U(N)$ be a random unitary matrix of size $N$, distributed with respect to the Haar measure on $U(N)$. Let $P(z)=P_U(z)$ be the characteristic polynomial of $U$. We prove that for $z$ close to the unit circle, $ \frac{P'}{P}(z) $ can be approximated using zeros of $P$ very close to $z$, with a typically controllable error term. This is an analogue of a result of Selberg for the Riemann zeta-function. We also prove a mesoscopic central limit theorem for $ \frac{P'}{P}(z) $ away from the unit circle, and this is an analogue of a result of Lester for zeta.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube