Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On critically coupled (s_1, s_2)-fractional system of Schrödinger equations with Hardy potential (2210.08260v2)

Published 15 Oct 2022 in math.AP

Abstract: In this article, our main concern is to study the existence of bound and ground state solutions for the following fractional system of Schr\"{o}dinger equations with Hardy potentials: \begin{equation*} \left{ \begin{aligned} (-\Delta){s_{1}} u - \lambda_{1} \frac{u~~}{|x|{2s_{1}}} - u{2_{s_{1}}{*}-1} = \nu \alpha h(x) u{\alpha-1}v{\beta} & \quad \mbox{in} ~ \mathbb{R}{N}, (-\Delta){s_{2}} v - \lambda_{2} \frac{v~~}{|x|{2s_{2}}} - v{2_{s_{2}}{*}-1} = \nu \beta h(x) u{\alpha}v{\beta-1} & \quad \mbox{in} ~ \mathbb{R}{N}, u,v >0 \quad \mbox{in} ~ \mathbb{R}{N} \setminus {0}, \end{aligned} \right. \end{equation*} where $s_{1},s_{2} \in (0,1)~\text{and}~\lambda_{i}\in (0, \Lambda_{N,s_{i}})$ with $\Lambda_{N,s_{i}} = 2 \pi{N/2} \frac{\Gamma{2}(\frac{N+2s_i}{4}) \Gamma(\frac{N+2s_i}{2})}{\Gamma{2}(\frac{N-2s_i}{4}) ~|\Gamma(-s_{i})|}, (i=1,2)$. By imposing certain assumptions on the parameters and on the function h, we obtain ground-state solutions using the concentration-compactness principle and the mountain-pass theorem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.