Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence Result for Non-linearly Perturbed Hardy-Schrödinger Problems: Local and Non-local cases (1711.08839v1)

Published 23 Nov 2017 in math.AP

Abstract: Let $\Omega \subset \mathbb{R}n$ be a smooth bounded domain having zero in its interior $0 \in \Omega.$ We fix $0 < \alpha \le 2$ and $0 \le s <\alpha.$ We investigate a sufficient condition for the existence of a positive solution for the following perturbed problem associated with the Hardy-Schr\"odinger operator $ L_{\gamma,\alpha,}: = ({-}{ \Delta}){\frac{\alpha}{2}}- \frac{\gamma}{|x|{\alpha}}$ on $\Omega:$ \begin{equation*} \left{\begin{array}{rl} \displaystyle ({-}{ \Delta}){\frac{\alpha}{2}}u- \gamma \frac{u}{|x|{\alpha}} - \lambda u= {\frac{u{2_{\alpha}*(s)-1}}{|x|s}}+ h(x) u{q-1} & \text{in } {\Omega}\ u=0 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{in } \mathbb{R}n \setminus \Omega, \end{array}\right. \end{equation*} where ${2_{\alpha}*(s)}:=\frac{2(n-s)}{n-{\alpha}},$ $\lambda \in \mathbb{R} $, $h \in C0(\overline{\Omega}),$ $h \ge 0,$ $q \in (2, 2*_\alpha)$ with $2_\alpha:=2^_\alpha(0),$ and $\gamma < \gamma_H(\alpha),$ the latter being the best constant in the Hardy inequality on $\mathbb{R}n.$ We prove that there exists a threshold $ \gamma_{crit}(\alpha)$ in $( - \infty, \gamma_H(\alpha)) $ such that the existence of solutions of the above problem is guaranteed by the non-linear perturbation $(i.e., h(x) u{q-1})$ whenever $ \gamma \le \gamma_{crit}(\alpha),$ while for $\gamma_{crit}(\alpha)<\gamma <\gamma_H(\alpha)$, it is determined by a subtle combination of the geometry of the domain and the size of the nonlinearity of the perturbations.

Summary

We haven't generated a summary for this paper yet.