Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized bound state solutions for the fractional Schrödinger equation with potential (2307.07927v1)

Published 16 Jul 2023 in math.AP

Abstract: In this paper, we study the following fractional Schr\"{o}dinger equation with prescribed mass \begin{equation*} \left{ \begin{aligned} &(-\Delta){s}u=\lambda u+a(x)|u|{p-2}u,\quad\text{in $\mathbb{R}{N}$},\ &\int_{\mathbb{R}{N}}|u|{2}dx=c{2},\quad u\in H{s}(\mathbb{R}{N}), \end{aligned} \right. \end{equation*} where $0<s\<1$, $N\>2s$, $2+\frac{4s}{N}<p\<2_{s}^{*}:=\frac{2N}{N-2s}$, $c\>0$, $\lambda\in \mathbb{R}$ and $a(x)\in C{1}(\mathbb{R}{N},\mathbb{R}{+})$ is a potential function. By using a minimax principle, we prove the existence of bounded state normalized solution under various conditions on $a(x)$.

Summary

We haven't generated a summary for this paper yet.