Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Limiting spectral distribution for large sample correlation matrices (2208.14948v1)

Published 31 Aug 2022 in math.PR, math.ST, and stat.TH

Abstract: In this paper, we consider the empirical spectral distribution of the sample correlation matrix and investigate its asymptotic behavior under mild assumptions on the data's distribution, when dimension and sample size increase at the same rate. First, we give a characterization for the limiting spectral distribution to follow a Marchenko-Pastur law assuming that the underlying data matrix consists of i.i.d. entries. Subsequently, we provide the limiting spectral distribution of the sample correlation matrix when allowing for a dependence structure within the columns of the data matrix. In contrast to previous works, the fourth moment of the data may be infinite, resulting in a fundamental structural difference. More precisely, the standard argument of approximating the sample correlation matrix by its sample covariance companion breaks down and novel techniques for tackling the challenging dependency structure of the sample correlation matrix are introduced.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.