Papers
Topics
Authors
Recent
2000 character limit reached

Large sample correlation matrices: a comparison theorem and its applications

Published 4 Jan 2022 in math.PR, math.ST, and stat.TH | (2201.00916v1)

Abstract: In this paper, we show that the diagonal of a high-dimensional sample covariance matrix stemming from $n$ independent observations of a $p$-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix. We assume that $n,p\to \infty$ with $p/n$ tending to a constant which might be positive or zero. As applications, we provide an approximation of the sample correlation matrix ${\mathbf R}$ and derive a variety of results for its eigenvalues. We identify the limiting spectral distribution of ${\mathbf R}$ and construct an estimator for the population correlation matrix and its eigenvalues. Finally, the almost sure limits of the extreme eigenvalues of ${\mathbf R}$ in a generalized spiked correlation model are analyzed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.