Logarithmic law of large random correlation matrices (2103.13900v3)
Abstract: Consider a random vector $\mathbf{y}=\mathbf{\Sigma}{1/2}\mathbf{x}$, where the $p$ elements of the vector $\mathbf{x}$ are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $\mathbf{\Sigma}{1/2}$ is a deterministic $p\times p$ matrix such that the spectral norm of the population correlation matrix $\mathbf{R}$ of $\mathbf{y}$ is uniformly bounded. In this paper, we find that the log determinant of the sample correlation matrix $\hat{\mathbf{R}}$ based on a sample of size $n$ from the distribution of $\mathbf{y}$ satisfies a CLT (central limit theorem) for $p/n\to \gamma\in (0, 1]$ and $p\leq n$. Explicit formulas for the asymptotic mean and variance are provided. In case the mean of $\mathbf{y}$ is unknown, we show that after recentering by the empirical mean the obtained CLT holds with a shift in the asymptotic mean. This result is of independent interest in both large dimensional random matrix theory and high-dimensional statistical literature of large sample correlation matrices for non-normal data. At last, the obtained findings are applied for testing of uncorrelatedness of $p$ random variables. Surprisingly, in the null case $\mathbf{R}=\mathbf{I}$, the test statistic becomes completely pivotal and the extensive simulations show that the obtained CLT also holds if the moments of order four do not exist at all, which conjectures a promising and robust test statistic for heavy-tailed high-dimensional data.