Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral properties of high dimensional rescaled sample correlation matrices (2408.09173v2)

Published 17 Aug 2024 in math.ST and stat.TH

Abstract: High-dimensional sample correlation matrices are a crucial class of random matrices in multivariate statistical analysis. The central limit theorem (CLT) provides a theoretical foundation for statistical inference. In this paper, assuming that the data dimension increases proportionally with the sample size, we derive the limiting spectral distribution of the matrix $\widehat{\mathbf{R}}_n\mathbf{M}$ and establish the CLTs for the linear spectral statistics (LSS) of $\widehat{\mathbf{R}}_n\mathbf{M}$ in two structures: linear independent component structure and elliptical structure. In contrast to existing literature, our proposed spectral properties do not require $\mathbf{M}$ to be an identity matrix. Moreover, we also derive the joint limiting distribution of LSSs of $\widehat{\mathbf{R}}_n \mathbf{M}_1,\ldots,\widehat{\mathbf{R}}_n \mathbf{M}_K$. As an illustration, an application is given for the CLT.

Summary

We haven't generated a summary for this paper yet.