Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multivariate Poisson and Poisson process approximations with applications to Bernoulli sums and $U$-statistics (2105.01599v2)

Published 4 May 2021 in math.PR

Abstract: This article derives quantitative limit theorems for multivariate Poisson and Poisson process approximations. Employing the solution of Stein's equation for Poisson random variables, we obtain an explicit bound for the multivariate Poisson approximation of random vectors in the Wasserstein distance. The bound is then utilized in the context of point processes to provide a Poisson process approximation result in terms of a new metric called $d_\pi$, stronger than the total variation distance, defined as the supremum over all Wasserstein distances between random vectors obtained by evaluating the point processes on arbitrary collections of disjoint sets. As applications, the multivariate Poisson approximation of the sum of $m$-dependent Bernoulli random vectors, the Poisson process approximation of point processes of $U$-statistic structure and the Poisson process approximation of point processes with Papangelou intensity are considered. Our bounds in $d_\pi$ are as good as those already available in the literature.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.